If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-8p+16p^2=0
a = 16; b = -8; c = +1;
Δ = b2-4ac
Δ = -82-4·16·1
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$p=\frac{-b}{2a}=\frac{8}{32}=1/4$
| (1/16)=64^(3x+5) | | 8x+3;x=7 | | 14x+45+x=180 | | -4.9t2+18t=0 | | 4.9t2+18=0 | | 8.6+1.2x=x+38.6 | | 4x+6=6x-5. | | 4x+2=7x+11 | | x+11=2(x-7) | | 8.6+1.2x=x+36.6 | | 1/x+1/x^2=2 | | 8.6+12x=x+36.6 | | x^2-21x+27=0 | | 5x/x-1=4 | | X^2+5x-8=6 | | 14^x-6+3=73 | | 5^4x=32 | | (-2-5i)(7-2i)=0 | | 13^x=43 | | X•(2x+7)=99 | | 9x+2=2x+3 | | 5(9x-7)/4=115 | | 6/128=x/24 | | 2(8x-3)=14+7(x11) | | 6+(3n-9)+45=12-4(9-2n) | | 1/4(12x+8)=8 | | -24=5x-9 | | 14x-18=13x+14 | | 13x+18=12x+12 | | 13^2x=21 | | -3-7=3x+7x-15x | | 3(x-7)=5(x-1) |